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Cannery Row, Monterey, California, 1973.

Balancing Birth

Cannery Row in Monterey in California is a poem, a
stink, a grating noise, a quality of light, a habit, a
nostalgia, a dream. ... In the morning when the sar-
dine fleet has made its catch, the purse-seiners wad-
dle heavily into the bay blowing their whistles. The
deep-laden boats pull in against the coast where can-
neries dip their tails into the bay.

Row describe a sardine fishery thriving off

the coast of Central California. Yet shortly
after Cannery Row was written in 1945, the sar-
dine population vanished. Today Cannery Row
is a tourist attraction. What happened to the sar-
dines is now an ecological mystery.

Did the sardines off the coast of California sim-
ply move to a different habitat? Or did the fishing
industry drive the population to extinction? To an-
swer these questions we need to understand how

These words from John Steinbeck’s Cannery

and Death

populations grow in number, and we need to un-
cover the biology that determines growth.

Many factors affect the growth of a population.
Some depend on the size, or density, of the popula-
tion, particularly how crowded it is. For this reason,
these factors are called density dependent. Other fac-
tors may not depend on population size. One such
factor is dispersal, the movement of individuals be-
tween populations. Of course, weather and other
features of the physical environment affect the
growth of populations, as well as their dispersal.

Population growth affects natural selection, and
natural selection in turn shapes population growth.
Interrelationships between population growth and
natural selection provide fascinating intersections
of ecology with evolution. Some of our most im-
portant insights into the natural world have come
from the study of the subtle ways in which popula-

tions grow in number. <
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THE POPULATION BOMB

In his influential book, The Population Bomb (1968),
renowned population biologist Paul Ehrlich describes a night
he experienced in Delhi, India:

The temperature was well over 100, and the air was a haze
of dust and smoke. The streets seemed alive with people.
People eating, people washing, people sleeping. People vis-
iting, arguing, and screaming. People thrusting their
hands through the taxi window begging. People defecating
and urinating. People clinging to buses. People herding
animals. People, people, people, people. ... since that
night I've known the feel of overpopulation.

The recent history of the human population is one of al-
most unfettered growth. It is shocking to realize how quick-
ly the planet is becoming populated. In 6000 B.C. there may
have been about 5 million humans. Before that, it probably
took 1 million years for the population to increase from 2.5

to 5 million. We call the time it takes for the population to
double in size a doubling time. From 6000 B.C. to A.D. 1650,
the doubling time averaged about 1000 years. However, by
1850 the population had again doubled from its level in
1650. By 1930 the doubling time had fallen to 80 years. By
the time The Population Bomb first appeared in 1968, the
doubling time was about 35 years, and the world human
population was about 3 billion.

One important prediction of exponential growth is that if
births exceed deaths, then—if we are also given unlimited
time—the population will get infinitely large. But it is impos-
sible for a planet of limited size and resources to sustain expo-
nential growth of any population forever. Thomas Robert
Malthus (Figure 10.1A) was one of the first to articulate this
idea in 1789 when he wrote, “The power of population is so
superior to the power in earth to produce subsistence for
man, that premature death must in some shape or other visit
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the human race” The logic behind these conclusions is so
simple, we may consider a fundamental principle of ecology
to be that no population will grow exponentially forever.

The ideas of Malthus were so persuasive to Darwin that they
became a crucial component in the development of his own
thinking, as we saw in Chapter 1. According to
Malthus, populations will tend to produce an
excess of progeny that cannot all survive. For
Darwin the important question was, which
individuals will die and which will survive? He
answered the question with his theory of nat-
ural selection: Those individuals possessing
traits that better adapted them to their envi-
ronment should be most likely to survive.

In evolutionary biology a population is a group of individ-
uals that regularly exchange genes. It is this exchange of genetic
material that links the evolution of the population’s members.
Ecologists are often less concerned with the exchange of genes

than with the physical boundaries
within which individual organ-
isms may be found. To be con-
sistent in this book, we will use
the evolutionary definition.
However, we need to bear in
mind that defining the ecolog-
ical boundaries of populations
may be difficult.

Suppose we wanted to pre-
dict the number of people
reaching retirement age in
the next 20 years. Estimates
of these numbers can be
most easily made

with the help of a
mathematical

model of popula-
tion growth. As
with most models
in population bi-

=y

FIGURE 10.1A Thomas Malthus forecast
the outcome of exponential growth.

T. R. Malthus (1766-1834)

Thomas Robert Malthus graduated from Jesus College, Cambridge,
with honors in mathematics. Although Malthus was concerned
about overpopulation, he was apparently not concerned about in-
breeding; he married his cousin, Harriet Eckersall, and had three
children. His most lasting work—An Essay on the Principle of Popu-
lation, as it Affects the Future Improvement of Society with Remarks
on the Speculations of Mr. Godwin, M. Condorcet, and Other
Writers—was published in 1798 anonymously. This essay met with
success, and Malthus published several revisions and summaries of
this work. Malthus was appointed Professor of Political Economy at
East India College in 1805, where he worked until his death.

The temperature was
well over 100, and the
air was a haze of dust

and smoke.

ology, however, there is seldom a single model that we can
apply to all organisms. So before turning to the models, we
must address the general life cycle of the organism. There are
two major categories of life cycles we could model. Both were
introduced in Chapter 7.

The first life cycle is one with discrete gen-
erations. This means that reproduction is syn-
chronized among the adults: There is a
breeding season. We often see manifestations of
this life cycle during springtime in temperate
climates. Released from the rigors of winter,
adults greet each other with a view to partici-
pating in sex and other reproductive activities.
The offspring from this round of breeding then
develop and enter the population of breeding adults in the next
generation. Among the many organisms that actually follow
this life cycle are many annual plants, insects that produce one
generation per year, and salmon. When generations are dis-
crete, time moves in sudden jerks. It does not flow.

The second major type of life cycle involves organisms
with continuous reproduction. Instead of discrete pulses of
reproduction, reproduction provides a continuous flow of
new recruits into the population. Therefore, this type of life
cycle is represented by continuous time. There are no jerks in
the ecological process, only a seamless procession.

Because discrete time models do not require knowledge of
calculus, we will use them exclusively in this chapter. Often
the biological conclusions are qualitatively the same with
both models. We are not usually sacrificing valuable ecologi-
cal insights by limiting ourselves to discrete-time models.

Another important aspect of models of population
growth is age structure. Organisms whose adults may repro-
duce multiple times and live for an extended period have an
age structure; that is, they consist of individuals of many dif-
ferent ages in different proportions. This means we need to
know something about how mortality and survival change
with age. It is easier to describe the growth of populations
without age structure, and so Modules 10.2 through 10.14
focus on these types of populations.

Malthus conjectured that there were two principal mechanisms
to halting population growth: Preventive checks included mecha-
nisms like postponed marriage, abstinence, homosexuality, birth
control, and abortion. Positive checks were the more severe forms of
population control, which entailed increased death rates from
sources like war and famine. Malthus was keenly aware that these
positive checks would not be meted out evenly and that the poorest
would suffer most. Consequently, he favored the use of preventive
checks like postponed marriage as a means of avoiding the devasta-
tion of positive checks.
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Populations may grow exponentially for short periods of time

We start with the exponential model of population growth, a
model that almost never applies to any real population—or, if
it does, will apply for only brief periods of time. This does not
mean the model is useless. In fact, by learning the predictions
of the exponential model, we are led to more realistic descrip-
tions of population growth.

The development of this model requires some assumptions
about the organism’s life cycle. For simplicity we focus attention
in Figure 10.2A on asexual organisms, which reproduce syn-
chronously. This bout of reproduction can be thought of as a
breeding season. Limiting this discussion to asexual organisms

may seem extreme, but in fact the inclusion of two sexes does
not substantially alter the predictions of the exponential model.

We also assume that each individual dies after it has repro-
duced, and the next generation is constituted only from the
surviving offspring. Many organisms have this type of life
cycle: annual plants, black widow spiders, Pacific salmon, and
others described in Chapter 7. If we allowed some adults to
survive to the next generation we would get similar results,
but the development of the model would be a bit tricky.

The key assumption of the model is that each individ-
ual, on average, produces a constant number of offspring,
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The net reproductive rate. It
represents the average number
of offspring each individual in
the population contributes to
the next generation. It also
represents the exponential rate
of population growth.
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FIGURE 10.2A A Model of Exponential Population Growth



referred to as A (lambda). We also call A the net reproduc-
tive rate. We assume that this rate of reproduction does not
change over time or as the population increases in size.

Figure 10.2A shows a model of exponential population
growth using the example of an asexual population that starts
out with 16 members and grows at a net reproductive rate (A)
of 2. This population increases in size over time, and the num-
bers that are added to the population each generation get larg-
er. As long as each individual in the population produces a
slight excess beyond replacement (A > 1.0), the population
will grow in this manner. These are the characteristic signs of
exponential growth. Not only do the numbers increase by
larger amounts in each generation, but as a great deal of time
passes, the population size is predicted to get infinitely large.
This is the major defect in this model,

since we know from common sense and practical experience
that no population on Earth can become infinitely large.
There must be some forces at work in natural popu-

lations that prevent this growth. We will discuss
some of those forces later in this module.

In the very unlikely case that A = 1.0, the
population will remain at a constant size that
equals its initial size. The likelihood of this oc-
curring is effectively zero. If the average indi-
_vidual in the population does not replace itself
(A < 1.0), then the population will decline in

size every generation until it goes extinct.
The following box shows how to predict mathe-
matically what the size of an exponentially grow-

. . o . N
ing population will be in the distant future. «Z»

Population Growth over Multiple Generations

The model of exponential growth in Figure 10.2A shows how pop-
ulation size changes over a single generation. Is there some way to
predict the population size at some distant time in the future for
exponentially growing populations? In fact, there is an easy way to
do this. Remember that the relationship shown in Figure 10.2A
holds for any generation. So if we start with some arbitrary time in
the future, time ¢, then we know that

Ny = AN (1)

In other words, the size of the present generation equals the net
reproductive rate times the size of the previous generation.

It would be helpful to have N; on the left-hand side of the equa-
tion and some simple relationship involving the initial population
size (Np) on the right-hand side. To do this we must replace N;,_;
with some other relationship. We know from the figure that if we
take the right-hand side of this equation and replace N,_; in equa-
tion (1) above with this value we get, N, = A(AN,_,) = A>N,_,. If
we continue with these substitutions, we get the useful result,
I\]t = )t!No.

From this relationship we can easily produce figures, like Figure
10.2B here, showing the long-term behavior of exponentially grow-
ing populations. Thus, an initial group of 50 mice that had a net re-
productive rate of 2.0 would grow to 200 mice (50 X 22) after two
generations, and to 51,200 mice after 10 generations (50 X 2!°).

Prolonged
exponential growth
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No biological population can grow exponentially forever.
Eventually, populations become so crowded that food, shel-
ter, and other essential resources are difficult to find. Individ-
uals that cannot find sufficient resources may die, or if they
survive, their capacity to reproduce may be impaired. Ac-
cordingly, the net reproductive rate, which we call A, can be
divided into two components as follows:

A = (number of offspring produced) X (probability that each
offspring survives to reproduce in the next generation)

The two components are given in parentheses above. The
first is the total number of offspring produced by each indi-
vidual—sometimes called fertility—in the previous genera-
tion. The second is the probability that each of those
offspring will survive to reproduce—sometimes called viabil-
ity—in the next generation.

Crowding can reduce the number of

wise, if adults starve, they may have reduced fertility. For ex-
ample, human females whose body fat has been reduced due
to starvation or intense exercise may fail to ovulate.

Crowded populations may also suffer from increased dis-
ease. This could arise from increased transmission of infectious
disease from one individual to the next, thanks to more fre-
quent contact. Or it may come from the accumulation of feces,
urine, and other waste products that accompany crowded con-
ditions. The black plague in Europe may have been one such
example, as the following box describes.

Another consequence of crowding is increased susceptibil-
ity to predators. Predators sometimes concentrate their ef-
forts on the most common prey in a given area, all but
ignoring acceptable but less common species. Thus the most
numerous species may also suffer increased mortality from
its popularity with predators.

newborn offspring, reduce offspring °0
survival, or both. The specifics will vary L
among organisms. For example, larval

growth in insects and amphibians can a0t

determine the size of the reproductive
adult. If food is scarce, larvae may grow
slowly and produce small adults. These
small adults may then have fewer off- 20
spring, as shown in Figure 10.3A. If

Eggs laid (per day)

Fertility may be reduced by:
* limited food for adults
* increased behavioral interactions
* reduced size of adults due to
crowding of prereproductive
individuals

food levels are very low, death may re-
sult, as illustrated in Figure 10.3B. Like-

Female size

FIGURE 10.3A The Relationship between Female Body
Size and Egg Laying in Laboratory Fruit Flies
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In mammals, crowding can stim- 100
ulate the formation of steroids such
as cortisone, cortisol and corticos- g,
terone, which help the organism £ Survival may be reduced by:
. S * limited food
adapt to stress by creating re:fldy re- 5 + increased waste products
serves of carbohydrate for quick en- * increased susceptibility to predators
ergy. However, prolonged stress and 3 * increased stress
&Y . P & . E * infanticide and cannibalism
production of these steroids have & « disease
adverse side effects, which include
the weakening of the immune sys- 0 : FIGURE 10.3B The Relationship
tem and sometimes death. Low High

i Food level between Food Level and Survival
In general, the deleterious effects in Laboratory Fruit Flies

of high population size get more severe as the level of crowd-
ing increases. This will lead to further reductions in
fertility and survival, which in turn will further reduce
the value of A. Ultimately, the net reproductive rate
will either equal one or be less than one. At this
point the population will cease growing. A goal
of Module 10.6 will be to predict when a popu-
lation will cease growing and thus how many
individuals can be reasonably supported by a par-
ticular environment. *

4

&

The Black Plague

Humankind has experienced three worldwide epidemics of the
deadly disease known as the black plague (Figure 10.3C). The sec-
ond pandemic, which ravaged Asia and Europe for three centuries,
may have killed 25 million people in Europe during the fourteenth
century—nearly one quarter of the total population. This disease
results in death in 50 percent or more of those who are afflicted and
untreated. It is caused by the bacteria Pasteurella pestis, which in-
fects rats and humans and is primarily transmitted by fleas.

As Eurasian populations grew during the Middle Ages, the lack
of sanitation helped maintain large populations of rats. When epi-
demics of the plague killed large numbers of rats, the fleas would
move to their less favored human hosts with devastating effects. Al-
though the cause of the disease was unknown until 1894, ancient
civilizations were aware of important aspects of its epidemiology.
The fifth-century Indian medical work, Bhagavata Purana, im-
plores people to leave their homes, “when rats fall from the roofs
above, jump about and die.” The Venetian Republic was so con-
cerned about the disease that in 1374 it required all ships coming
from plague-infested territories to wait 40 days before landing, so
any infections could run their course. This 40-day period, or
quaranti giorni, is the root of the English word quarantine, meaning
enforced isolation to prevent the spread of disease.

FIGURE 10.3C The Plague, by Arnéld Bocklin
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The rocky intertidal zone, shown in Figure 10.4A, has been the
site of many important studies in ecology. Land in the intertidal
zone is splashed and partially submerged by the ocean. The du-
ration of these periods of submersion depends on the tides, the
local weather conditions, and the distance from the ocean—cri-
teria that subdivide the intertidal into two zones. The upper in-
tertidal zone is mostly splashed, only occasionally submerged
during the highest tides. Animals and plants that live here must
be able to with-
stand heat and
water loss. The
lower intertidal
zone is only
briefly exposed
to the air each
day.  Animals
and plants here,
such as the bar-
nacles and algae
in Figure 10.4A,
are  constantly
pounded by the
surf and must be
securely fastened
to rocks; otherwise they will be washed out to sea.

Many intertidal animals survive by filtering food brought
in by the tides and surf. Many small, often microscopic,
plants and animals live near the surface of the ocean. They are
called plankton. Mucus secreted by filter-feeding animals traps
plankton, which is then used as food. For a filter-feeding ani-
mal, the intertidal can be a luxurious place to live because the
continuous movement of water ensures a constant supply of
food. In many intertidal habitats, the first resource to vanish
when population size is high is not food but open space for
attachment. Thus, one limit to plant and animal numbers
may simply be the available space. Any environmental factor
that limits the distribution or abundance of an organism is
called a limiting resource.

The relationship between free space and animal numbers
was demonstrated by Paul Dayton. He created two experi-
mental regions in an intertidal zone. The control region
(Figure 10.4B) contained undisturbed populations of sea

FIGURE 10.4A The Rocky Intertidal Zone in
the Pacific Northwest

Barnacle

FIGURE 10.4B On the San Juan Islands in Washington State, sea
anemones and barnacles live in the same area of the intertidal
zone. The sea anemones are often clumped below large
barnacles and thereby protected from drying in the air.
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FIGURE 10.4C Paul Dayton removed 45 percent of the barnacles
in some areas and none in others (control areas). In the winter
and fall sea anemones grew rapidly in the area lacking
barnacles, due to the extra free space. In the summer the
numbers of anemones declined due to warm, drying conditions.

anemones (Anthopleura elegantissima) and barnacles
(Balanus cariosus). The test region was the same except that
45 percent of the barnacles were removed, creating more free
space. As Figure 10.4C shows, the number of sea anemones
stayed relatively constant in the control region. But in the test
region, the numbers of sea anemones fluctuated widely. Their
numbers increased rapidly in the fall and winter as they occu-
pied the newly cleared space. In the summer the number of
anemones declined due to the drying heat and wind.
Although space can be a limiting resource in the intertidal
zone, as Dayton’s experiment shows, it is not always a limiting
resource. Other aspects of the physical environment may also
determine when space is limiting. For example, although sea
anemones can reproduce by a vegetative process of budding,
many invertebrates, such as barnacles, broadcast large numbers
of larvae out to sea. These larvae must develop and then be
washed by tidal currents onto open space. In Oregon and Wash-
ington, it appears that there are always large numbers of these
invertebrate larvae set-
tling, leaving little free
space (Figure 10.4A). In
California the nearshore
currents carry the larvae
farther from shore, in-
creasing the likelihood
that the larvae will die
before settling. Conse-
quently, there is more
free space in the Califor-
nia intertidal zone than
in the Northwest, as

Figure 10.4D shows.«fs

San Juan Islands

oS

Washington

Oregon

O oy,

FIGURE 10.4D The amount of free
space (orange) in the intertidal zone
increases from Oregon to California.



How do Malthus’s “positive checks,”
such as famine, affect growing popu-
lations? Rather than generating catas-
trophes, they usually act by creating
gradual declines in reproductive
rates as population size increases.
Ecologists refer to the operation
of such checks on population
increase as density-depend-
ent population growth, with
density referring to the num-
bers of organisms inhabiting

a particular area.

In fact, the relationship
between population growth FGURE 10.5A Raymond Pearl
and density was the first
focus of ecological theory. Raymond Pearl (Figure 10.5A)
vigorously explored this relationship in the early part of the
twentieth century. Pearl championed the use of a mathemat-
ical model, called the logistic equation (see Module 10.6), to
describe density-dependent population growth. Much of
Pearl’s experimental research was used to support the logis-
tic equation.

Pearl initiated a strong experimental laboratory research
program to investigate the theory of density-dependent pop-
ulation growth. The use of experimental laboratory research
is still not as common in ecology as it is in many areas of sci-
ence, despite early laboratory research by Pearl (see the box),
Gause (see Module 12.6), and others. Ultimately, ecologists
are interested in understanding the forces and principles re-
sponsible for determining the abundance and distribution of
organisms in their natural environments. Experimental labo-
ratory research involves environments that are different from
those in nature, and usually simpler. This difference has led
some ecologists to question the validity of inferences made
from laboratory systems.

MAILTHUSIAN SPECTRES

The use of simplified laboratory systems has served other
branches of science very well. As an example, a physicist may be
interested in understanding the laws that govern the motion of
objects in the Earth’s atmosphere or on its surface. In these
types of “environments,” friction affects the velocity and accel-
eration of objects. However, physicists have found it helpful
first to study the laws governing the motion of objects in the
absence of friction. Introductory courses in physics still begin
instruction with these simple models of motion. After develop-
ing and testing these simple theories, physicists then modified
their laws of motion to include the complications of friction.

The science of ecology is not nearly as advanced as
physics. Ecologists are still developing very basic models.
Thus, although we accept the notion that the growth of most
populations will be affected by factors other than density,
many of our models are focused on the idea of density de-
pendence by itself. However, progress in ecology will require
the careful development and testing of additional ideas,
which must of necessity start out simply.

Ecology has also advanced by carefully designed experi-
ments using natural populations. In addition, we have
learned much through careful observation of organisms in
their natural habitats.

Many organisms experience a decline in net reproductive
rates with increasing population density. In effect, increasing
population size regulates the ultimate number of individuals
in the population. However, this regulation may be far from
perfect. A basic issue in ecology is the extent to which fluctu-
ations in population size are due either to the environment or
reproductive regulatory mechanisms, as seen in Chapter 1.

Some species regularly experience periods of crowding.
These organisms are often able to endure severe crowding,
managing to survive and reproduce. These abilities are rooted
in adaptations of behavior or morphology. As we will see in
Module 10.7, these adaptations are important for understand-
ing how organisms live in changing environments.

Raymond Pearl (1879-1940), the Founder of Experimental Ecology

After obtaining his Ph.D. from the University of Michigan, Ray-
mond Pearl studied in Europe with the biostatistician Karl Pearson.
Pearson instilled in Pearl an appreciation for mathematical ap-
proaches to biology. Pearson also taught a method of achieving sci-
entific generalizations that appealed to Pearl. This method was to
take a wide variety of scientific observations and reduce them to a
brief formula or a few words, called a law.

With this background Pearl was eager to find the laws that gov-
erned population growth. He undertook research at the Institute for
Biological Research at Johns Hopkins University, which he had estab-
lished with support from the Rockfeller Foundation. Pearl did exper-
imental research with fruit flies to test models of population growth.

He was also interested in predicting the growth of human popula-
tions with the logistic model. Pearl’s work was criticized for his at-
tempts to extrapolate human population growth from the logistic
model. Some scientists thought that the only way to control human
population growth was through the genetically based improvement
of human intelligence. Pearl’s theory seemed to contradict this ap-
proach by suggesting that a variety of natural factors will predictably
and reliably slow down population growth. Ultimately, the long-term
predictions of the logistic model were not very accurate. In the 1920s
Pearl predicted that the population of the United States would be
about 197 million by the year 2000. In fact the real number was clos-
er to 272 million, although it had been boosted by immigration.
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BBTY] Density-regulated populations do not grow without bound

The effects of growth-limiting factors increase with popula-
tion density. If net reproductive rates decline as population
density increases, the population will reach a density where
the net reproductive rate is exactly one, and each individual
in the population simply replaces itself. When this happens,
the population will cease growing until population densities
decrease and net reproductive rates are again greater than
one. It is also possible for the population size to get so large
that net reproductive rates drop below one. In that case, the
population size will decrease until the net reproductive rates
again rise to one.

To make these predictions more
quantitative, we need to define the
mathematical relationship between
population size and net reproductive
rate. No single equation will apply to all
organisms. Indeed, we expect this rela-
tionship to vary from one species to
another, and perhaps between popula-
tions of the same species. But many
important consequences of density-de-
pendent population growth can be un-
derstood by examining simple models.

One such model, known as the
logistic model, is based on a linear rela-
tionship between density and net re-
productive rate. In contrast to the
exponential model that we examined
in Module 10.2, which sees the net
reproductive rate as constant, the lo-
gistic model assumes that the repro-
ductive rate decreases linearly as
population density increases, as the
graph in Figure 10.6A shows. The
properties of the logistic model de-
pend on numerical constants called
parameters. The logistic model uses
only two parameters. The first is r, the
intrinsic rate of increase. This pa-
rameter determines the maximum
rate of growth at low densities. The
second parameter, K is called the car-
rying capacity. The carrying capacity
reflects the maximum number of in-
dividuals that the environment can
support.

In Figure 10.6A we see that as the
number of individuals in the popu-
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rate of exponential growth slows, reflecting the combined
effects of reduced fertility and increased mortality brought
about by crowding. (Mathematically, the slowing occurs
because —rN//K becomes significantly less than zero and
this quantity is added to the exponential growth term,
1 + r.) As the population size gets closer to the value K
(the carrying capacity of the environment), the net repro-
ductive rate declines and gets closer to one. When the pop-
ulation size is exactly equal to K, the population ceases to
change size. We call this point N; = K an equilibrium of the
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This looks the same as the exponential
growth model, except we have added
(Ny) next to the A to emphasize that
reproductive value depends on density.

lation (N;) gets close to zero, the
population size in the next genera-
tion is approximately (1 + r)N,. If
r > 0, then the population is grow-
ing at an exponential rate equal to
1 + r. As the population grows, the

1, the intrinsic rate of increase,
is a constant. At low density the

rN;
Nt+1:1+r_TNt
l K, the carrying capacity is a constant.
Its value will depend on how many

reproductive rate is greatest and
closeto 1 + 1.

individuals can be supported by the
environment. When N, K, each
individual just replaces itself and the
population size stays constant.

FIGURE 10.6A A Model of Logistic Population Growth
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logistic model because population size does not change at
that population density.

This simple mathematical result illustrates the general
principle that density-dependent population growth causes
populations to grow toward their equilibrium density

:7

whether they start at low or high densities. Ecologists use this
theoretical pattern to explain the maintenance of steady pop-
ulation densities in both experimental and natural popula-
tions. In some species, the logistic model does a reasonable
job of predicting population growth (see box).

Logistic Population Growth in Real Populations

How does the growth of real populations compare with the pre-
dictions of the logistic model? The growth of real biological
populations can be studied by examining the total change in
population size as a function of density. The total change in
population size is simply the present population size minus the
size in the previous generation, or in terms of the notation we
developed earlier, N;1; — N;. This change can then be com-
pared to the change predicted by the logistic equation. Using the
results developed in Figure 10.6A, a little algebra shows that
N1 — N, = N, — {N?/K. For the unicellular ciliate,
Paramecium caudatum, r has been estimated from the observa-
tions in Figure 10.6B to be 0.922 and K as 200. Thus, when the
density of P. caudatum is 100 animals per 0.5 cc, the expected
change in population size is 0.922 X 100 — 0.922 X 100%/200

= 46.1. The solid line in Figure 10.6B shows the predicted
changes in population size from the logistic equation. The ob-
served changes, shown by the circles, generally are fairly close to
the predicted changes.

Productivity of Paramedium caudatum

150

100

50

—50

Change in population size

—100

—150 I
50

1 1 1 1
100 150 200 250

Number (per 0.5 cc)

300

FIGURE 10.6B The growth of Paramecium caudatum as a function
of population density. The solid line shows the predicted change in
population size from the logistic equation; the symbols show the
observed change.

Malthusian Spectres 307



Density-regulated populations may exhibit chaotic behavior

For the logistic model of population growth, when net
reproductive rates are equal to one, the population
size should stay constant. The population size at
which the population ceases growing is an equi-
librium. Many factors other than population
density may affect the population size. Envi-
ronmental fluctuations, such as those pro-
duced by weather, may lead to either additional
deaths or enhanced survival, changing popula-
tion size by small amounts above or below the
equilibrium. This type of small change is called

a perturbation.

Will the population return to the equilibrium
size after a perturbation, or will it move to some
new equilibrium? The answer to this question
hinges on a property of the equilibrium known as
its stability. If the population returns to the equilib-
rium after a perturbation, we say the equilibrium is
stable. If the population moves away from the equi-
librium size, this is evidence of an unstable equilibri-
um. Figure 10.7A presents a visual analogy for stable
and unstable equilibria.

For the logistic model the stability of the equilibri-
um, N, = K, is determined by the magnitude of r, the in-
trinsic rate of increase. If r is greater than zero but less
than two (the red curve in Figure 10.7B), the equilibrium
at K, the carrying capacity, is stable. Let’s try to make sense
of this condition. If r is less than zero, net reproductive
rates are less than one at all densities and the population
will die out (recall that at very low density the net repro-
ductive rate will be approximately 1 + r). When r is greater
than zero but less than two, net reproductive rates are

STABLE EQUILIBRIUM

If the ball is moved up the valley, it is
returned by the force of gravity to its
equilibrium position at the bottom.

UNSTABLE EQUILIBRIUM

In this case, any slight perturbation of
the ball from its resting position
causes the ball to continue moving
away from its equilibrium position at
the top of the hill.

FIGURE 10.7A Types of Equilibria
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S For the logistic model, the
B stability of the equilibrium
=] point, N; = K, is determined
3 by the value of .
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0 10 20 30 40 50 FIGURE 10.7B Stability of the Logistic Model
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If r is very large, population size fluctuates in a
seemingly erratic fashion. This behavior is called
chaos. Populations that display chaotic dynamics
are very sensitive to small displacements.

The graph shows the population size predicted from
the logistic equation with r = 2.7 and K = 1000. The
only difference between the two curves is that the
red line started at 100 individuals and the blue line
started at 101.

8 PM“
£ /
£ ao0f

% 10 20 30 20

Generation

greater than one and the population size increases at low
density. As population size increases, the net reproductive
rate decreases, slowly approaching one and allowing the
population size to gradually approach the carrying capaci-
ty (green curve). As r gets larger the population tends to
overshoot and then undershoot the equilibrium size, oscil-
lating but eventually approaching the carrying capacity
(red curve). Eventually, when r > 2.0 (blue curve), the
overshoots and undershoots continue indefinitely.

When r gets very large (which for the logistic model means
r > 2.57), the population dynamics become very erratic.
This type of behavior is called chaos. Chaos is a type of be-
havior exhibited by many things besides population
growth—from electrical circuits to economies. One property
of chaos in populations is that population sizes can change
abruptly and dramatically in a single generation—as shown
in Figure 10.7C, where a theoretical population with a carry-
ing capacity of 1000 occasionally drops to 360 individuals. It

Stability of Laboratory Populations of Fruit Flies

50 FIGURE 10.7C Chaos

isn’t easy to predict the future of a chaotic population. Figure
10.7C shows how different the future population sizes are in
two chaotic populations that start at almost the same sizes
(100 vs. 101). With real populations, prediction is even more
complicated because population size also varies due to ran-
dom environmental factors.

The box below demonstrates stable and unstable equilib-
ria in two laboratory environments. Laboratory experi-
ments, like the one below, aid the ecologists in dissecting the
important events that determine population stability. In
flour beetle populations adults often cannibalize pupae. The
stability of the flour beetle populations depends critically
on these rates of pupal cannibalism. It also turns out that
flour beetle larvae cannibalize eggs and occasionally pupae.
However, larval cannibalism is less important for stability of
the beetle populations. Ultimately, high levels of adult can-
nibalism and high adult mortality can lead to population

cycles and even chaos. %

Below are data from laboratory populations of the fruit fly
Drosophila melanogaster. Figure 10.7D shows five populations kept
under conditions that result in a stable carrying capacity. During
the first five generations there is a slow and steady increase in the
population size. After generation five, the populations fluctuate
around their carrying capacity. The populations in Figure 10.7E are
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Generations
FIGURE 10.7D

in a different environment, where the carrying capacity is not stable.
These populations show large increases in size immediately fol-
lowed by large decreases. For Drosophila an unstable environment is
one in which adult food levels are high and larval food levels are
low. The high food level provided to adults results in substantial in-
creases in egg production, thus effectively increasing the value of r.
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400

Generations

FIGURE 10.7E

Malthusian Spectres 309



The logistic equation is based on the premise that crowding
reduces survival and fertility. What are the biological mecha-
nisms that generate these effects? Here, we consider some of
the biological mechanisms that occur in organisms with
complex life cycles. Some organisms start life as small
versions of adults and then grow to
their adult size. Other organ-
isms, including some

frogs and insects have juvenile and
adult forms that are morphologically
quite different. They may even live in
different habitats. For example, many
insects start life as crawling or burrow-
ing larvae with limited ability to move
large distances. After an active period
of larval growth, they form a resting
; phase as a pupa. Usually the pupa is

* covered with a protective case, inside of
which the insect undergoes a dramatic metamorphosis to
the adult form. Usually the adult can fly. Likewise, amphib-
ians normally begin life as an aquatic organism with gills. To
become adult, their bodies undergo a metamorphosis to

D

Larval stage,

growth Metamorphosis
0
0
.'.. Eggs
\.— Adults
Dispersal

and reproduction

Adaptations to Variable Density

FIGURE 10.8A A Generalized Complex Life Cycle
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BBTE] Many organisms have complex life cycles that are density regulated

form legs that permit the animal to travel on land (see Figure
10.8A). The combination of two distinct life-forms into one
life cycle has led ecologists to call the typical insect and am-
phibian life cycle complex.
B, Figure 10.8A is a generalized illustra-
£ > . tion of a complex life cycle. Organisms
= Q‘ with such life cycles devote the first part
k of the cycle to growth and the second part
s # to reproduction. For the insect and am-
, @& phibian life cycles, the adult phase is better
t' able to disperse. But in marine invertebrates
P the dispersal cycle is often reversed. The pre-re-
productive stages live as zooplankton, small float-
ing animals that are dispersed by the ocean
currents. To mature, the larval zooplankton
settle out and attach to rock, only then be-
ginning reproduction.

Because the different life stages may
occupy very different environments, the effects
of population crowding may differ between life
stages. We have already discussed the problems of
limited space faced by many marine intertidal inver-
tebrates. Although less is known about the planktonic phase
of these organisms’ life cycle, the effects of density must be

much less severe among plankton.

Crowded larval conditions are probably common for
many amphibians and insects. These organisms have evolved
ways of coping with crowding that increase their chances of
surviving to become adults. For instance, when some toads
(Bufo americanus) are crowded as larvae, food is in short
supply. The larvae then grow much more slowly and meta-
morphose into very small adults (see Figure 10.8B). This
small body size reduces the number of offspring they can
produce as adults. However, had the larva died from starva-
tion, they would not have had offspring at all.

Size of toad
at metamorphosis

1 1 1
0 100 200 300
Larval density

FIGURE 10.8B Adaptations to Variable Density: Toads When
toads are crowded, the tadpoles may metamorphose at a small
size and thus avoid death by starvation. Interestingly, when the
density is very low there are probably too few larvae to stir up
all the food and keep it suspended in the water column. As a
result, there is a small decline in body size at the lowest larval
density.
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FIGURE 10.8C Adaptations to Variable Density: Flies Larvae of the fruit fly, Drosophila, often form
pupal cases on the surface of the food medium in uncrowded cultures. If the cultures are crowded,
the pupae can sink into the soft food and drown. In such crowded cultures the larvae try to avoid

pupating on the surface and tend to crawl up the sides of the culture, away from the food surface.

In laboratory cultures of fruit flies (Drosophila
melanogaster), the consistency of the food depends on the
numbers of larvae that are feeding in it. When there are few
larvae, the food may remain relatively hard and dry. With
many larvae, the food becomes a fluid mess, much like quick-
sand. To become adults, the larvae must find a place to form
their pupal case and undergo metamorphosis. In uncrowded
cultures, they tend to pupate on the surface of the food or
close to it (Figure 10.8C). But in crowded cultures pupating
on the surface is dangerous because the pupae would sink
into the food and die. Under these conditions, the larvae tend
to avoid the surface of the food, instead crawling high up the
side of the culture as shown in Figure 10.8C.

Tribolium, the common flour beetle, also has a complex life
cycle—although all life stages are typically found in a common
environment. For these species an important component of
population regulation is cannibalism (Figure 10.8D). As more
larvae are produced, they consume more eggs. Since eggs be-
come larvae, high numbers of larvae will reduce the numbers
of larvae in the future through their consumption of eggs.

The levels of cannibalism may also respond to natural se-
lection. When Tribolium are experimentally provided eggs
from close relatives, their propensity to cannibalize them de-
creases over time due to group selection. This type of natural

selection is described in more detail in Chapter 20.  «fs

0.8

0.6 -

0.2

=@ T. castaneum
w@= T. confusum

Fraction of eggs cannibalized

0.0 |
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Mean larval age (days from egg hatch)

FIGURE 10.8D Cannibalism is an important mechanism of
population regulation for flour beetles. At a fixed egg density,
Tribolium larvae consume more eggs as they get older. As more
eggs are eaten, fewer larvae are produced; this relaxes the
intensity of regulation on egg numbers.
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DENSITY-DEPENDENT NATURAL SELECTION

The importance of the natural environment in shaping the
adaptations of organisms is inescapable. Yet evolutionary bi-
ology in the first half of this century paid little attention to
ecology. In 1930 the great English statistician and population
geneticist, Sir Ronald Fisher, proposed that natural selection
will always increase the mean fitness of a population. Fisher
called this theory the Fundamental Theorem of Natural Se-
lection. In 1962 the American ecologist, Robert MacArthur
(see the box), tried to redirect the course of evolutionary
thought by developing an ecological analogue to Fisher’s
Fundamental Theorem of Natural Selection. This attempt of
MacArthur’s did not result in a lasting theory, but it did illus-
trate the point that ecology and evolution might be com-
bined, and biologists in both fields have continued to explore
this intersection.

Ecologists devote much attention to the response of popu-
lation growth to density. And some evolutionary biologists
study adaptation to population density. Combined, these two
efforts yield an evolutionary biology based directly on the
ecology of populations. Part of this union is the field of
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density-dependent natural selection. It is the first success of
evolutionary ecology. In this module we outline its basic the-
ory and key experiments.

Some of the seminal ideas behind density-dependent se-
lection were first summarized in 1967 by MacArthur and
E. O. Wilson. They called the theory r- and K-selection,
where r and K refer to the parameters of the logistic model.
Specifically, r is the intrinsic rate of increase, or maximum
rate of growth at low population densities, and K is the car-
rying capacity, or the maximum number of individuals that
the environment can support. Over the last 30 years, various
experiments have tested these ideas. The history of this re-
search provides important lessons for research methodolo-
gies in evolution and ecology. We review some of these
lessons here.

The original development of this theory was qualitative.
MacArthur and Wilson argued that for populations living at
low density with abundant resources, natural selection would
favor traits that contribute to r, the intrinsic rate of increase in
the logistic equation. It was not clear exactly what traits could
make this contribution, so there were many suggested candi-
dates. (These candidate traits are referred to as life-history
characters since they are associated with the timing and

process of reproduction. You will be familiar with these
characters from Chapter 7.) For instance, some suggested
that decreases in generation time, the average time be-
tween birth and the production of offspring, and in-
creases in fecundity would be the most likely
changes brought about by life at low popula-
tion densities. Others suggested that increas-
ing r could be accomplished by a decrease
in body size.

At high densities the opposite suite of
traits would evolve, causing an increase in
the carrying capacity for individuals with
these traits. For example, if individuals
became more efficient at extracting ener-
gy from the available food, a given envi-

FIGURE 10.9A Experimental Tests of r- and K-
selection Cattails studied by McNaughton.
The r-selected populations had more rapid
development and produced more seed, but
invested less energy in each seed compared to
the K-selected populations.



ronment could support a larger number of these efficient in-
dividuals.

A central thesis of r- and K-selection is the notion that
evolution cannot simultaneously maximize r and K, so there
are trade-offs. As a result, the suite of traits that are favored at
low densities are different from those favored at high densi-
ties. So while selection at low density may favor increased fe-
cundity, that increase may be accompanied by a decline in
competitive ability at high densities. It is hard to predict what
these trade-offs will be like, or if they will even exist. Fortu-
nately, experimental tests have given insights into the nature
of these trade-offs.

Some early tests of these predictions
compared different species that lived under
different density conditions. The idea was
that each species represented a different end
product of evolution and that the differences
between the species were largely due to the dif-
ferent densities at which they lived. We review
two of the classic studies in this field, from the
early 1970s. McNaughton compared two species of
cattail (Typha, Figure 10.9A) and concluded that
species from the northern United States had traits
consistent with r-selection, whereas species from the
southern United States had traits consistent with K-
selection. Of course it is hard to be sure that envi-
ronmental density was the only important
difference between these species; or that other fac-
tors, such as climate or genetic drift, did not con-
tribute to the observed differences.

Some other early studies focused on different popula-
tions of one species. Gadgil and Solbrig studied populations
of dandelions (Figure 10.9B). They found that a genotype of
dandelion prevalent in an undisturbed site was a better
competitor but produced fewer seeds than a genotype com-
mon in a disturbed site. The assumption was that popula-
tion densities should be higher in the undisturbed sites.
However, there was no way to know what the past densities
had been at these sites, or if there were factors other than

density that varied between sites and affected the evolution
of competitive ability and seed number. Gadgil and Solbrig
looked at competitive ability and seed number because the
measurement of actual rates of population growth in nature

is difficult. %

FIGURE 10.9B Experimental Tests of r- and K-selection Gadgil
and Solbrig found that the predominant genotype of dandelion
in undisturbed areas (K-selected) was a better competitor than
the predominant genotypes in the disturbed area (r-selected).
However, the r-selected genotype produced more seeds than the
K-selected genotype did.

Robert H. MacArthur, Innovative Theoretical Ecologist (1930-1972)

Much of the interest in selection at vary-
ing densities was inspired by the theoreti-
cal work of Robert MacArthur (Figure
10.9C). MacArthur’s short career was
marked by the development of highly
original theories concerning species diver-
sity, life histories, and many other impor-
tant problems in ecology. MacArthur
emphasized theory that could explain
general patterns in ecology, as opposed to
searching for hypotheses that might apply
to only a few species. Critics of
MacArthur pointed out that many of his
theories were overly simplistic.

FIGURE 10.9C
Robert H. MacArthur

The most extensive development of his theory for density-
dependent population growth appeared in his 1967 book with
E. O. Wilson, Island Biogeography. MacArthur and Wilson called
their theory of density-dependent selection - and K-selection, em-
phasizing the consequences of selection at extreme densities. At very
low density, they argued that the genotypes with highest r values
would be favored; at very high densities, the genotypes with the high-
est K-values would win. These ideas were attractively intuitive, but at
times their application was exaggerated, which caused scientists to
dismiss them prematurely. However, the theory of - and K-selection
has been made more rigorous (as outlined in Module 10.11) and the
predictions from this type of theory have been tested, as described in
this chapter. The groundwork laid by MacArthur has led to substan-
tial advances in our understanding of ecology and evolution.
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to tolerate crowding

BBTBT] Great differences exist within species in their ability

A major goal in the field of evolu- 1.0
tionary ecology has been to deter-
mine the relationship between o8l

life-history characteristics (traits as-
sociated with the timing and rate

of reproduction) and fitness. The 0er

== Dark females
s Light females

chance of surviving to become an

adult, viability, must be related to 0.4

color of the sheep’s coat. The allele that
produces  light-colored coats  when
homozygous is recessive to the allele that
produces dark brown coats.

J In Soay sheep a single locus determines the

These same sheep also show genetically based
differences in horn shape. Some sheep have
scurred horns (small and twisted), while
others are unscurred. The horn type is
determined by one or two loci.

fitness. But viability alone is not

Survival

equivalent to fitness, because the 1o J In 1996 Paul Moorcroft and his colleagues
organism must also leave off- analyzed eight years of survival data from
spring. Therefore the number of = 08F Seottand. Tho sorvva of femeles at ditrent
offspring produced will be related densities is shown on the right.
to fitness. But fertility alone is not 06 L From these results it appears that at low
fitness if the organism never finds ﬁfg‘;f‘l;slll Pl&f:‘gﬁes }f;‘l'(‘)’i"e e“zietl)le’sbb‘?ﬁ::
a mate. There is Certainly no sin- 04k : Zc:srcr:j::r:::;es than the 1ti}:ght phenofype atzg the scurred
gle) easily measured character that ’ : ; | phenotype does better than the unscurred.
we can assume is equal to fitness. 200 300 400 500

Nevertheless, some characters Density

may be very closely related to fit-
ness. For example, the per capita
contribution to population growth is a plausible measure of fit-
ness. This measure, which can be related to the number of
offspring left in the next generation, depends on both sur-
vival and fertility. Population growth rates will vary with
population density. At high density the carrying capacity of a
genotype may be equivalent to fitness. This is a somewhat ab-
stract concept, but in principle refers to the ability of a geno-
type to withstand crowding. While at low densities, the initial
reproductive rate may be more important for fitness. For
these reasons, it is attractive to think of fitness as an organ-
ism’s contribution to population growth.

If we utilize this definition of fitness, then natural selec-
tion may shape population growth rates if population growth

Net reproductive rate

1 1 1
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Adult density

1
0 200 1000

FIGURE 10.10B Net Reproductive Rates Vary among Genetically
Different Populations of Fruit Flies Populations of fruit flies
(Drosophila melanogaster) can be rendered homozygous for
large portions of their genome. The graph shows two such
populations and their net reproductive rates at a variety of
densities. Note that at very low density, one population grows
50 percent faster than the second population.
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FIGURE 10.10A Different genotypes of Soay sheep vary in their ability to survive crowding.

rate varies genetically within populations. Figures 10.10A and
10.10B show two examples of this type of genetic variation.
The first example (Figure 10.10A) comes from a natural pop-
ulation of Soay sheep (Ovis aries; Figure 10.10C) living in
Scotland. In these populations, there is clearly strong selec-
tion in favor of sheep with dark coats and scurred (small,
twisted) horns during periods of high density. The reason
these genotypes survive better is unknown, but they are a re-
markable example of density-dependent selection in a natu-
ral population.

The second example (Figure 10.10B) involves populations
of fruit flies (Drosophila melanogaster) in the laboratory.
Fruit-fly chromosomes were manipulated to create different
populations of flies. All individuals in a population were
made homozygous for their second chromosome. When
rates of population growth were estimated, large differences
were found between genetically different populations. For
this collection of genotypes, the differences in fit-
ness, measured as net reproductive rates,
were greatest at low
densities. These
net reproductive
rates are the
same as those
defined in
Module 10.2.

Y/
0’0

FIGURE 10.10C
Soay Sheep




Because rates of population growth depend on
both the survival and fertility of individuals, ge-

. . . : Wa,a, =
netically based differences in population
growth rates will affect fitness, and natural se-
lection may change the frequencies of geno- W, =

types. As we saw with Soay sheep and fruit flies,
the differences between the growth rates of par-
ticular genotypes can vary with density. Soay
sheep are differentiated at high density, and
fruit flies show the greatest growth rate differ-
ences among genotypes at low density.

We can determine the outcome of selection
with varying population density using a simple
genetic model with two alleles (A; and A;) at a
single locus. If we assume population growth fol-
lows the logistic equation, then we can summa-
rize the growth characteristics of each genotype
by its specific values of r and K (Figure 10.11A).
In the example in Figure 10.11B, the A;A; ho-
mozygotes have highest fitness at low density, the
AyA, homozygotes have highest fitness at high
densities, and the heterozygotes are intermediate.
These fitness differences reflect the fact that the
A A} homozygotes have high values of r but low
values of K, relative to the A,A, homozygotes (Figure 10.11C).

What then is the outcome of natural selection? The out-
come of natural selection depends on the environment. In
crowded environments, the AyA; homozygotes have the high-
est growth rates and the highest fitness and therefore increase
in frequency to fixation (i.e., their frequency approaches 100
percent; Figure 10.11D). In those environments where popu-
lation density is kept low, the A;A; homozygotes have highest
fitness, and they increase in frequency at the expense of the
genotypes carrying the A, alleles.

The particular density conditions experienced by natural
populations vary. In stable environments, populations may
have long periods of uninterrupted growth, reach their car-
rying capacity, and thus experience strong selection for those
traits that increase growth rates at high densities. It is also
possible that, in some environments, floods, drought, and
winter freezes keep population numbers well below the car-
rying capacity. In these environments, we would expect se-
lection to favor those traits that will increase growth rates at
low density.

Natural constraints may prevent any single genotype from
being best for both r and K. One explanation for the existence
of such constraints may be that organisms have limited ener-
gy stores, so that energy devoted to high reproduction at low
densities may not be available for surviving stressful condi-
tions at high population densities. For instance, an individual
could increase r by producing more eggs. One way to tolerate
crowded conditions, and thus periods of reduced food, is to
store fat. But eggs and fat both require energy, so they may
trade off against each other. This type of trade-off may be
fairly common.

T+ rp—

Two alleles, A8 A, B3

A1A; homozygotes have highest
fitness at low density.

A,A, homozygotes have highest
fitness at high density.

A,A; heterozygotes have
intermediate fitness.

|—~ Intrinsic rate of growth for the A;A; homozygote
riyN

1+ —

Kyq Carrying capacity for the A;A; homozygote
ryN Total population size, which is the sum of
K»s all three genotypes

FIGURE 10.11A Fitness equals each genotype’s net reproductive rate.

FIGURE 10.11B Genetic variation for population growth.
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FIGURE 10.11C This figure demonstrates that when the
homozygous genotypes are kept in isolation, they grow logistically
and attain their carrying capacities. The carrying capacity of the
AA, genotype is greater than that of the genotype.

Frequency of A,

FIGURE 10.11D Changes in allele frequency and population size
over time from several different initial allele frequencies. When
population density is low, the curves lean to the right, indicating
that the A, allele is increasing due to the superior fitness of A,
carrying genotypes at low density. At far left in the figure, the
A, allele has become fixed while the total population has grown
and become crowded.
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If trade-offs exist between the responses to selection at differ-
ent densities, then the genotypes favored by natural selection
in uncrowded environments should be different from the ones
favored in crowded environments. One way to test this idea is
to create populations that differ only in the density they are
exposed to as they evolve over many generations. Will the
growth rates of these populations then fit the theory of densi-
ty-dependent selection?

Just such an experiment has been carried out with fruit
flies. The experiment, illustrated in Figure 10.12A, used
three populations that had been maintained in the labora-
tory at low densities for 198 generations. From each of these
three populations, a new population was created that was
maintained with crowding. After 25 generations of evolu-
tion at high densities, the rates of population growth (meas-
ured as net reproductive rates per
week) were measured in both the low-
density and high-density popula-
tions, at both high and low densities.
Because there were three replicate
populations, genetic differences that
appear in all three high-density popu-
lations must have arisen due to natu-
ral selection as opposed to a random
process like genetic drift. —

We use the net reproductive rates A \ A
to estimate relative fitness. A genera- b
tion in these environments takes
about three weeks, so relative fitness
was estimated as the growth rate of
the low-density population divided by
the growth rate of the high-density
population cubed. From the graph in
Figure 10.12A we see that at a test
density of 10 larvae, the relative fitness
of the low-density populations is
greater than 1.0, due to their superior
growth rates. At the two higher test
densities, 750 and 1000, the average
relative fitness of the low-density pop-
ulations is less than 1.0, indicating the
superior fitness of the high-density
populations. However, natural selec- 127
tion has been unable to produce a
genotype that does best at all densi-
ties. This is consistent with the under-
lying hypothesis that there will be
insurmountable trade-offs in an or-
ganism’s ability to do well at both ex-
treme densities.

These results show that evolution
has affected population growth rates.
However, individual traits have also

density adapted populations

0.9~

Titness of \ow-density adapted
populations relative 1o ngn-
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Three populations are continued at
the low-density conditions.

evolved in response to crowding. Three of these traits are
well-defined larval behaviors. A behavior called pupation
height refers to the distance traveled by a larva up the side of
its culture prior to settling and becoming a pupa. Some lar-
vae do not travel at all but will pupate the surface of the
food. Other larvae may travel to the very top of the culture.
The populations that have evolved at high density are more
likely to travel far up the side of the culture and less likely to
pupate on the surface of the food compared to the popula-
tions that have evolved at low density. In a crowded culture,
nearly 80 percent of pupae that pupate on the surface of the
food die, so avoiding the surface as a pupation site is clearly
adaptive in crowded environments.

A second behavior that has changed in response to density-
dependent natural selection is a measure of the feeding rate

Three populations of fruit flies (Drosophila melanogaster)
are kept in the laboratory for 198 generations at

low larval and adult densities.
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Three populations are maintained
in crowded larval and adult conditions.

After 25 generations of selection, population growth rates are
measured at low (10), moderate (750), and high (1000)

adult density.

Using population growth rates as
measures of fitness, we see the
populations that have evolved at low
density have the highest fitness at the
lowest density. At higher densities the
populations that have evolved under
crowded conditions have highest fitness.

1000

750
denS'ty FIGURE 10.12A Experimental studies of

10
Test density-dependent natural selection.



of larvae. Fruit fly larvae have only one goal—to grow. The
larvae feed and grow continuously until they surpass a mini-
mum size required to successfully metamorphose and be-
come an adult. In environments with limited food it turns
out that the best competitors have the highest feeding rates

(see Module 12.2). Consequently, the populations of fruit
flies that have evolved at high population density have
evolved much higher feeding rates than their low-density
counterparts. A third behavior is called the foraging path

length and is described in the box below. o

Behavior Evolves in Response to Density

Density-dependent natural selection can even affect the evolution
of behavior. Consider fruit-fly larvae, which show genetic polymor-
phism for foraging. When larvae are put on a flat surface, some—
called rovers—move a lot, and some—called sitters—do not (Figure
10.12B). Larvae from populations that have low densities are most-
ly sitters, whereas rovers are more common in populations that
have been kept at high densities for many generations.

How can we explain the evolution of these foraging behaviors?
In crowded environments, rovers are probably better at finding
food and avoiding waste. In uncrowded environments, the extra
movement of rovers may just waste energy. This sitter-rover poly-
morphism appears to be controlled by a gene that codes for a cyclic
guanosine monophosphate-dependent protein kinase. This protein
has been implicated in nervous system function in other organisms.

(A) Sier (B) Rover

FIGURE 10.12B

The foraging path length
of sitters (left) and rovers
(right). The trails are paths
left by larvae in a yeast
solution.
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but not selection

The logistic model produces sustained fluctuations when r is
sufficiently large, as we saw in Module 10.7. Although ris a pa-
rameter that reflects genetically based components of survival
and fertility, r may also be affected by environmental factors.
For example, the number of offspring an individual produces
may be affected by either the amount or the quality of food
the organism eats. Some environments may be uncrowded
but have poor food quality, such

IBTRE] The stability of populations is affected by the environment,

est to ecologists. In Nicholoson’s experiment, the blowfly larvae
and adults received food independently. The first 630 days of
observations, during which the adults were given large quanti-
ties of food, show dramatic population cycles, as Figure 10.13A
shows. After that period, when the level of adult food were re-
duced, the cycles were significantly attenuated.

as low levels of protein and car-
bohydrate, which may depress r
and enhance population stabili-
ty. The converse is also true.
Blowflies are insects with a
flying adult stage and a crawling
larval stage. These insects are a
significant agricultural pest in
Australia, where they infest graz-
ing animals. In Figure 10.13A we
give an example of a blowfly
population whose stability is af-
fected by environmental factors. 0
In the 1950s, A. J. Nicholson
studied the factors that affect
population stability in blowflies.
His research was not motivated
by recent theoretical results con-
cerning population stability, but
it has recently been of great inter-

7,000

6,000 -

5,000 |-

High food

4,000

3,000 [

Number of flies

2,000

1,000

~— A. Unlimited ground liver for adults —-=<——B. 1.0 grams ground liver per day —>

Low food

700
Duration of experiment (days)

FIGURE 10.13A Environmental Factors Affect Population Stability Populations of blowflies show
changes in stability when adult food levels are changed. High levels of food cause increases in
female fecundity, and the population becomes unstable. The red line indicates the total number
of adults and the green vertical lines represent the number of new recruits added to the adult
population. During the first part of the experiment almost all new adult recruits are produced
only when the total population size is low.
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Besides environmental factors, genetic changes in popula-
tions may also affect the value of r in the logistic equation,
and hence population stability. To investigate this problem,
Mueller and his colleagues introduced five populations of
fruit flies, which had evolved for 43 generations at low larval
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FIGURE 10.13B Evolution of Population Stability Over the first
25 generations in environments with crowded larval conditions,
there was strong selection for increased competitive ability as
the larvae adapted to the cultures (see blue line). However, the
stability of these populations seems unaffected by the evolution
of life-history traits in response to crowding. An index of
population stability shows roughly the same range and
magnitude of effects in the first 15 generations of selection (red
circles) as it does in the last 15 generations of selection (green
circles).

and adult densities, into environments with low levels of lar-
val food and high levels of adult food. This resulted in very
crowded larval cultures and population sizes that cycled
around an equilibrium but never settled down to stable pop-
ulation densities.

What happened in this experiment? During the first 25
generations, the populations evolved in response to crowding.
They adapted to the crowded larval conditions, and this adap-
tation is reflected in measurable improvements in competitive
ability, as the blue line in the graph of Figure 10.13B shows.
Changes in population size were recorded every generation
and used to compute an index of population stability. The
closer this index is to zero the more stable the population. As
the red and green circles on the graph in Figure 10.13B show,
there was little change in the stability of the populations; the
population stability indices overlap extensively when early
generations are compared with later generations. These results
suggest that over ecological time spans—perhaps from dozens
to a few hundred generations—the stability of a population is
more likely to be influenced by changes in the local environ-
ment than it is to be influenced by changes in the genetic com-
position of the population.

Ecological interactions between different life stages have
important consequences for the stability of flour beetle pop-
ulations too. This simple experimental system is described in

more detail in the following box. o

Cannibalism Affects Population Stability of Flour Beetles

The dynamics and stability of flour beetle (Tribolium castaneum)
populations are affected by adult cannibalism of pupae as well as
adult mortality. It is thus possible to study the dynamics of flour
beetle populations by manipulating these events. Theoretically, we
expect that low rates of adult mortality and cannibalism should re-
sult in the population gradually approaching a stable equilibrium,
while high rates of adult mortality and cannibalism should destabi-
lize the population. Figures 10.13C and 10.13D show that when

Adults
500
= e —
g 375 e
= _—
(1]
B 250 F _/’
. |
(]
o]
=
3 1251
1 1
09 12 24 36
Weeks

FIGURE 10.13C In this experiment adult mortality was kept
low, and the population approaches a stable equilibrium
point of about 375 adults. Each line shows an independent
replicate population.

adult mortality was manipulated, the populations behaved as pre-
dicted, gaining or losing stability as expected.

Cannibalism may be affected by levels of crowding and by natu-
ral selection. It is not clear whether natural selection on flour bee-
tles would have different effects on stability than those we saw in
fruit flies.
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FIGURE 10.13D In this experiment,
researchers increased the adult mortality
rate after 12 weeks. This caused the
population to move away from the stable
point and enter a two-point cycle. The
peak of the cycle occurs at about 225-250
animals, and the trough is at 50-75
animals.
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THE BomB DiD NoOoT BLOW

If there is one principle we can derive from this chapter, it is
that no biological population can grow exponentially forever.
This principle also applies to the human population. Is the
human population indeed headed for global starvation and
ecological catastrophe, caused by our overabundance? In this
module we review two major trends suggesting there is hope
that human population growth can avoid the worst possible
scenarios. This is not to say that some regions of the world
will not suffer starvation and severe disease from time to
time. Even with no further increase in the human population,
its current members will continue to deplete natural re-
sources, and replacements for these must be found. Never-
theless, gains that have been made in food production and in
decreasing human fertility might prevent the population
bomb from exploding.

Humans practiced animal and plant breeding long before
we had any understanding of genetic mechanisms. Indeed,
Darwin used the great success that breeders had in creating
animal breeds to support his theory of adaptation by natural
selection. For Darwin, nature employed the same mecha-
nisms of differential selection, with the most important traits
being those that helped individuals survive and reproduce in
their environment.

However, as we have added to our knowledge of the genet-
ic basis of natural and artificial selection, improvements in
these techniques have become possible. For instance, we now
understand that most of the progress achieved in any artifi-
cial selection program that uses
outbreeding organisms depends
on pre-existing genetic variation
in the population. Consequently,
preserving genetic variation in
economically important species
is vital to the long-term success
of any breeding program. In ad-
dition, most scientists now real-
ize that evolution is never static.
Today’s super corn variety may
need to be modified in the future
as new insect or microbial pests
evolve.

Many agricultural breeding
programs now include the
preservation of genetically di-
verse stocks and ancestral popu-
lations as important sources of
genetic variation. The levels of
genetic variation in some of
these species is impressive. For
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instance, store-bought corn (maize) is remarkable for its con-
sistent appearance. As a species, however, maize harbors
tremendous levels of genetic variation—some of which is vis-
ible in the color and shape of its seeds (Figure 10.14A).

However, wild populations and stocks of maize are not
the only avenue now available for the improvement of agri-
cultural stocks. With the advances in genetic engineering of
the last 20 years, it is now possible to introduce genes from
other species into agricultural stocks for their improvement.
In this module we review some of the impressive gains that
have been made with genetically engineered crops.

The gradual decline in mortality among developed coun-
tries has been associated with a decline in fertility, thus pre-
venting rapid population growth. However, in the first half of
the twentieth century, underdeveloped countries experienced
very rapid declines in mortality as modern medical advances
were introduced. The result was unprecedented population
growth in these countries. Are there any indications that these
countries have made any progress decreasing fertility?

Although fertility has been generally lower in developed
countries than underdeveloped countries, many developed
countries—including the United States—had fertility rates
above replacement in the middle of the twentieth century.
However, as we see in Figure 10.14B, fertility has shown a
steady decline in the United States since the 1950s. This trend
has also been observed in other developed countries. Female

FIGURE 10.14A The Range of Corn Seed Phenotypes
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FIGURE 10.14B Observed Total Fertility in Italy and the
United States

fertility in Italy, for instance, has dropped below replacement
levels since the late 1970s.

However, no country has shown a more dramatic decline
than China, which has dropped from nearly six offspring per fe-
male in 1970 to two in 1990 (Figure 10.14C). More important-
ly, many other regions of the world have experienced similar
declines (Figure 10.14C). The major reason for these declines in
the developing countries has been changes in the behavior of
people. Many couples have chosen to limit their families to two
children through the use of contraceptives. These changes in
behavior have been aided by massive international efforts to in-
still family planning in these countries. In many developing
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FIGURE 10.14C Past and Projected Total Fertility in
Different World Regions

countries, there has also been a postponement of marriage and
child bearing. In 1950, most Asian women were married by the
time they were 20. In 1980 the average age of Asian women at
their first marriage was 20-25 years.

This transition to lower fertility in the more developed
world is quite different from events in the less developed
countries. In Europe and North America, lower fertility was
often reached without the aid of modern contraceptive tech-
niques—and in many instances, despite social and religious
forces opposing such practices. Next we will learn more about
how these reductions in fertility affect population growth
projections for the next century.
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In more developed countries, 1.0
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A sharp distinction between the developed
and undeveloped countries exists in age-
specific patterns of survival and fertility. The
figure on the left shows the survival and
fertility of females in Spain and Mexico in
1966. The major differences in survival are at
very young ages, when Mexican females have
a much greater chance of dying. Mexican
females have more children than Spanish
females do at all ages.
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The chance that an individual 35
survives from the first age class to
age class x is often represented by
the symbol I, The estimated
chances of survival for females in
Mexico and Spain are shown at
the top of Figure 10.15A. For the
same age classes, fertility of fe-
males may be summarized as the
number of offspring born to fe-
males in age class x. This value is
often represented by the symbol,
m,. Female fertility for the Mexi-
can and Spanish populations is
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The transition to low rates of
population growth in European
populations was made gradually
by reductions in both fertility and
mortality. The patterns shown in
the figure are for Sweden between
1820 and 1960.

also shown in Figure 10.15A
(middle). In 1966 the Mexican
population had higher death
rates, especially at young ages,
compared to the Spanish popula-
tion, but still had higher population growth rates. The reason
for this is that female fertility in Mexico was often substantially
higher than in Spain at all ages.

Many European populations had much higher birthrates
200 years ago. However, as modern medical technology and
hygiene were introduced to Europe, mortality gradually de-
clined, especially among infants. This was accompanied by a
gradual decline in the birthrate (Figure 10.15A). Of course,
until recently the less developed countries lacked modern
medical technology. The rapid introduction of antibiotics
and other modern medical practices to less developed coun-
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FIGURE 10.15A Human Demographic Patterns

tries has suddenly reduced mortality with hardly any change
in fertility. The result is rapid population growth.

We can summarize patterns of births and deaths in human
populations with a few simple demographic parameters. If the
total number of individuals in the populations is N, then the
crude birthrate of a population in any year is simply the total
number of births in that year (B) divided by the population
size (N). The crude death rate is the number of deaths (D) in
a given year divided by the total population size (N). The
crude rate of population increase is simply births minus
deaths divided by the total population size: (B — D)/N.



World Demographic Parameters, 1995-2000

Growth
Rate
Country or Area (%)
World Total 1.3
Developed regions? 0.3
Less developed regions® 1.6
Least developed regions© 2.4

Crude Crude
Birthrate Death Rate
(per thousand) (per thousand)
22 9
11 10
25 9
39 15

 All regions of Europe and North America, Australia/New Zealand, and Japan.

bAll regions of Africa, Asia (excluding Japan), Latin America and the Caribbean, and the regions of Melanesia, Mi-

cronesia, and Polynesia.

€ According to the United Nations in 1998, these consisted of 48 countries; 33 are in Africa, 9 in Asia, 1 in Latin America

and the Caribbean, and 5 in Oceania.

As an example, let’s consider Mexico in 2000. The demo-
graphic parameters for that country were as follows:
N = 100,350,000, B = 2,310,000, and D = 502,000. Thus,
the crude birthrate expressed as a rate per thousand is
(2,310,000/100,350,000) X 1000 = 23. The death rate is 5
per thousand, and the rate of increase is 18 per thousand, or
1.8 percent.

Based on birth and death rates, the world’s populations
generally fall into three categories (see Table 10.15A): (1) High
birth and high death rates are found in the least developed
countries; (2) High birth and low death rates are found in the

less developed countries; and (3) Low birth and low death
rates are found in the developed countries.

Many of the developed countries have very low growth
rates, and in some cases population sizes are decreasing. Nev-
ertheless, the world population is still growing rapidly. The
total world population passed 6 billion in 1999. During this
period the population was adding 1 billion new people every
12 years. In the early part of the twentieth century, it took
nearly 33 years for the world population to add 1 billion peo-
ple. The United Nations predicts that the world population
will reach 8.9 billion by the year 2050.
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BRI The use of selection and genetic engineering vastly expanded

agricultural productivity—though their long-term ecological

effects are not known

The production of food in modern agriculture faces a variety of
problems that set limits not only to the productivity of existing
farms but also to where farming can be carried out. These limits
include insect, bacterial, and fungus pests; lack of nutrients in
the soil; weed species that compete for those nutrients; and
water. Other problems are more subtle but of growing impor-
tance. For instance, in many arid areas of the world, crops can
be raised with irrigation. However, the high rates of evaporation
result in increasing soil salinity, sometimes to the point that
plants are unable to grow. Genetic engineering is now being
used or considered as a solution for all the problems we have
just reviewed. The result of these efforts is increasing agricultur-
al productivity. Let us review some of these recent advances.

+ 9
Transformation Transgenic
variety construct

1. Conduct transformation

and inbreeding.

2. Cross the
transformed
variety with
elite variety.

3. Choose
progeny
with the
transformed
trait and
backcross.

4. Continued
backcrossing
inroduces
elite genetic
background;
this is followed
by inbreeding.

e

Elite variety is eventually
homozygous for the
transformed gene of interest.

FIGURE 10.16A Genetic Engineering of Crop Species
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The general methodology of genetically engineering crops
is shown in Figure 10.16A. A gene of interest, say one that
fixes nitrogen from the atmosphere, is carried in bacterial
cells. The gene of interest and the bacterial host are together
called the transgenic construct. This gene is introduced into
a susceptible genotype, or transformation variety, of the
crop species. The presence of the target gene in any particular
plant can be determined by a genetic analysis of tightly linked
marker loci. Inbreeding will make the target gene homozy-
gous. Then by a series of crosses with the genotype actually
used for growing crops, the so-called elite variety, the gene of
interest is brought into the useful elite variety.

ok "\ “\: A R " ;
(C) Bacillus thuringiensis spores and Bt toxin
crystals (arrow).

FIGURE 10.16B Examples of genetic engineering in crop species.




FIGURE 10.16C Genetic analysis of wild-type, domesticated, and
hybrid tomatoes allows identification of important genes that
affect color and shape of the fruits. These lines serve as
reservoirs of important genetic information.

Crown gall (Figure 10.16B) is caused by a bacterium
(Agrobacterium tumefaciens) with a small, circular piece of
DNA called a plasmid (explained in Chapter 5) that infects
many plant species, including roses, grapes, cherries, and
peaches. The bacterium invades wounds in the plant and in-
jects the plasmid into plant tissue. The plasmid DNA then
integrates into the plant nuclear DNA and causes the plant
cells to build the gall. Ironically, the ability to transfer DNA
from a plasmid into plant nuclear DNA has made A. tumefa-
ciens a useful vector for making transgenic constructs. The
growth of crown gall is inhibited by another bacteria,
Agrobacterium radiobacter. A. radiobacter was genetically en-
gineered so that it could not pass on its genetic information
to A. tumefaciens. These genetically engineered A. radiobac-
ter, known as strain K1026, are now used quite effectively to
control crown gall.

A soil bacterium, Bacillus thuringiensis, makes a protein,
Bt toxin, that kills a variety of insect pests (Figure 10.16B).
The gene coding for Bt toxin has been introduced into more
than 50 different crop species. These plants thus have contin-
uous protection from pests, eliminating the need for costly
pesticide spraying. As with man-made pesticides, some in-
sects are now developing a resistance to Bt toxin. In addition,
plants that make Bt toxin excrete it into the soil, where it can
persist for long periods of time. It now appears that this lin-
gering Bt toxin can have detrimental affects on “good” insect
species that naturally consume pest species. More research
will be needed to see if there are ways to avoid these undesir-
able effects of Bt toxin.

The ancestral species (Ly-
coperscion pennellii) of today’s
cultivated  tomato  (Lyco-
perscion  esculentum) looks
very different from contem-
porary domesticated plants
(Figure 10.16C). However, the
ancestral species is a reservoir
of genetic variability that can
be useful for developing new
varieties of crops. By making
crosses between the cultivated
tomato and the ancestral
species, hybrids with interme-
diate traits can be created. By
measuring these traits in the
hybrids and the two parents, it
is possible to map the genes
that affect important color,
shape, and other tomato char-
acters. These genes can then
be isolated in varieties for fu-
ture use in tomato breeding

o
programs. «Js
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We began Module 10.14 with a review of evidence that many
countries have undergone a decline in fertility in the last 50
years. This trend is expected to continue in the developing
countries of the world well into the twenty-
first century. These declines imply that popu-
lations that are now growing will eventually
stop growing and even start decreasing in
size. Because it is impossible to know exactly
how quickly fertility will decline in the fu-
ture, scientists have estimated the most prob-
able changes. These estimates can then be
used to predict when certain populations will
start declining in size (Figure 10.17A).

From these estimates we see, for instance,
that in the European part of the former USSR there is about
a 90 percent chance that the populations will start declining
in size by 2015. Less developed countries like China and sub-
Saharan Africa lag behind, but show an increasing likelihood
of population decline as the twenty-first century progresses
(Figure 10.17A). For the entire world population, there is a
50 percent chance that numbers will start declining by the
year 2075.

We show what this means for total population size in
Figure 10.17B. By 2050, the total world population is pre-
dicted to be about 3 billion more than the current number of
6 billion. However, growth is expected to slow by the end of
the twenty-first century and not to exceed 10 billion. In fact,
current estimates suggest there is about a 15 percent chance
that in the year 2100, the world population will be less than
it is today.

1.0
08| European part of
the former USSR
>
2 World —
= 06
e}
© ) .
Qo China region
o 04l
o
02 '—Sub_—Saharan
Africa
00 1 1 1 11 1 11 1 11 1 11 1 1| 1 1
OMNMOMONMONONOLOLOLOLWOLWO
OO - — AN ANMMITITLOLOWONNOONO OO
OO0 0000000000000 O0OO0O0 0O —
NANANANANANANANANANANANANANANANANANANNN
Year

FIGURE 10.17A Probability of population decline. Due to
declines in human fertility, populations are predicted to stop
growing in the future. This figure shows the probability (y-axis)
that a given region in the world will start its population decline
at some time in the future. By the year 2100, current predictions
suggest there is a very high chance that almost all parts of the
world will have started their population decline.
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For the entire world
population, there is a 50
percent chance that
numbers will start

declining by the year 2075.

Total world

These predictions depend on the projections of fertility
decline. What evidence suggests that fertility will not increase
in the future? In fact, this could happen; and then these pre-
dictions would be of little use. Howev-
er, recent historical trends suggest it is
unlikely for countries that have experi-
enced fertility declines to show a later
increase in fertility. In Figure 10.17C,
the changes in fertility between 1950
and 1990 have been recorded. The
number of countries that fall into one
of four categories of fertility in
1950-55 and 1990-95 are listed in this
figure. Very few countries show an in-
crease in fertility (e.g., numbers in the orange zone). Most
countries show movement to lower fertility (the blue zone)
or no change (the purple zone). If these trends continue to
hold, then the widespread drop in fertility is not likely to
show a reversal in the next century.
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FIGURE 10.17B Projected world population size. Based on
information about fertility declines around the world, the best
estimates of the total human population are shown here as a
dark grey line labeled, “United Nations medium.” Due to some
uncertainty about this projection, the various shaded bands give
some indication of the range of uncertainty in these predictions.
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FIGURE 10.17C Fertility change over 40 years. Numbers indicate
number of countries in each category.
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. When birth and death rates are constant, populations grow or
decline exponentially.

a. When births exceed deaths, this means that a population
will increase in size indefinitely.

b. The most obvious factor that will prevent exponential
growth is the effect of crowding on fertility and on survival.

c. Food and space are two resources that will be in short sup-
ply as density increases.

. A simple model of density-dependent population growth is
the logistic model.

a. This model has two parameters, r and K. K is called the
carrying capacity, and it determines the equilibrium popu-
lation numbers that can be supported by the environment.

b. The second parameter, r, determines the maximum rate of
population growth at low densities.

c. The parameter r of the logistic model also determines
whether the carrying capacity is a stable equilibrium.

d. When ris greater than 2.0 the equilibrium becomes unsta-
ble; the population may exhibit cycles or even seemingly
random variation called chaos.

. Natural selection may also affect population growth. If there is

genetic variation for traits that affect r or K of the logistic, we
expect per capita rates of population growth to increase evolu-
tionarily through a combination of increases in either r or K,
or in both r and K.

. In populations of fruit flies kept at either very high or very low

densities, we observe appropriate improvements in population
growth rates. However, there are trade-offs such that the geno-
types that do well at high densities do not do well at low den-
sity, and vice-versa.

. The human population may avoid large-scale catastrophes

from overpopulation. This is a consequence of two major
events.

a. Advances in agriculture in the last 50 years have allowed
food production to keep pace with population growth.

b. There are signs that many countries are undergoing reduc-
tions in fertility. The long-term consequence of this de-
crease is that world population size may stabilize or even
decline by the year 2100.

. The exponential growth model predicts that population size
will be constant when A is exactly equal to one. Why do you
think the exponential model is rarely offered as an explanation
for the growth of populations that exhibit stable population
size?

. In a population growing exponentially with A = 1.5, how
many generations would be required to increase the current
population size by tenfold?

. List some factors that may slow rates of population growth at
high densities, and give some specific examples.

. In alogistically growing population with » = 1 and K = 1000,
there are two population sizes that result in no change in pop-
ulation size over time. What are these population sizes?

. Atasingle locus with two alleles (A and a), the genotypic val-

ues of r and K are as follows:

Genotype r K

AA 1.0 900
Aa 1.2 1100
aa 1.5 1000

If this population is allowed to grow to an ecological equilibri-
um, what will happen to the frequency of the A allele?

. The stability of some populations is affected by aspects of their

ecology. Give some examples for which the biological factors
affecting stability are well documented.

. Are the crude rates of human population growth density-de-

pendent or density-independent estimates of future growth?

age structure density-dependent population
carrying capacity growth

chaos discrete generations

complex life cycle doubling time

crude birthrate elite variety

crude death rate equilibrium

crude rate of population increase equilibrium population size

exponential population growth  perturbation
generation time population

intrinsic rate of increase r- and K-selection

life history characters stability

limiting resource transformation variety
logistic population growth transgenic construct
net reproductive rate viability
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